Norm ASTM D2892-13

Standaard testmethode voor destillatie van ruwe aardolie (15-theoretische plaatkolom) Deze titel is een machinevertaling van de oorspronkelijke Engelstalige titel (Engelstalige pagina ).
75.040 Ruwe aardolie
Samenvatting :

1.1 This test method covers the procedure for the distillation of stabilized crude petroleum (see Note 1) to a final cut temperature of 400°C Atmospheric Equivalent Temperature (AET). This test method employs a fractionating column having an efficiency of 14 to 18 theoretical plates operated at a reflux ratio of 5:1. Performance criteria for the necessary equipment is specified. Some typical examples of acceptable apparatus are presented in schematic form. This test method offers a compromise between efficiency and time in order to facilitate the comparison of distillation data between laboratories.

Note 1Defined as having a Reid vapor pressure less than 82.7 kPa (12 ps

1.2 This test method details procedures for the production of a liquefied gas, distillate fractions, and residuum of standardized quality on which analytical data can be obtained, and the determination of yields of the above fractions by both mass and volume. From the preceding information, a graph of temperature versus mass % distilled can be produced. This distillation curve corresponds to a laboratory technique, which is defined at 15/5 (15 theoretical plate column, 5:1 reflux rati
o) or TBP (true boiling poin

1.3 This test method can also be applied to any petroleum mixture except liquefied petroleum gases, very light naphthas, and fractions having initial boiling points above 400°C.

1.4 This test method contains the following annexes and appendixes:

1.4.1 Annex A1Test Method for the Determination of the Efficiency of a Distillation Column,

1.4.2 Annex A2Test Method for the Determination of the Dynamic Holdup of a Distillation Column,

1.4.3 Annex A3Test Method for the Determination of the Heat Loss in a Distillation Column (Static Condition

1.4.4 Annex A4Test Method for the Verification of Temperature Sensor Location,

1.4.5 Annex A5Test Method for Determination of the Temperature Response Time,

1.4.6 Annex A6Practice for the Calibration of Sensors,

1.4.7 Annex A7Test Method for the Verification of Reflux Dividing Valves,

1.4.8 Annex A8Practice for Conversion of Observed Vapor Temperature to Atmospheric Equivalent Temperature (AET),

1.4.9 Appendix X1Test Method for Dehydration of a Sample of Wet Crude Oil, and

1.4.10 Appendix X2Practice for Performance Check.

1.5 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.

1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. For specific warning statements, see Section 10.

1.7 WARNING—Mercury has been designated by many regulatory agencies as a hazardous material that can cause central nervous system, kidney and liver damage. Mercury, or its vapor, may be hazardous to health and corrosive to materials. Caution should be taken when handling mercury and mercury containing products. See the applicable product Material Safety Data Sheet (MSDS) for details and EPA’s website——for additional information. Users should be aware that selling mercury and/or mercury containing products into your state or country may be prohibited by law.

Toevoegen aan winkelwagen
EUR 86.00 (excl. btw)
Kies je taal
Viewer title
Het NBN maakt gebruik van cookies om je gebruikservaring te optimaliseren. Door verder te surfen, ga je akkoord met het gebruik van cookies zoals beschreven in de NBN-privacyverklaring.